Laurie Johnson PhD AICP Consulting | Research ### Lifelines Council's Objectives - Develop and improve collaboration in the City and across the region by regularly convening a group of Executive Officers and Senior-level operational deputies of local and regional lifelines providers - Understand inter-system dependencies to enhance planning, restoration and reconstruction. - Share information about recovery plans, projects and priorities. - Establish coordination processes for lifeline restoration and recovery following a major disaster event. | | | Electric
power impply | Gas supply | Water rapply | Transportation. | Communication | |--|--------------------------|--|--|---|--|--| | Interactions
among
Lifeline
Systems in
Earthquakes
(Source: Kameda, Nojima, 1992) | Electric
power cupply | * | O Malharcten of
plant, got hold-
et, presente de-
tion;
O Malharcten of
centralized control
system;
O No Charlestice. | O Malfanction of
filtratum ploats &
pumping segimes;
O Malfanction of
centralized control
criters;
O No Shumination | O Treffic ugas! describe: O Malfanctus of electra car & urban radways; O Malfanctus of contrained control cyclose; O No Chemication. | O Melfuncium of
sei office;
O Melfuncium of
centralismi
O No dimension;
O Melfuncium of
miles berrior;
O Less of data | | | Gus экруйу | Expensive one an
alternatives, e.g.
Het rapply | 10.0 | △ Recovery work complications;
△ Scientific for machinery | O No proming
owing to separa
worth | | | | Water Supply | O Lack of coolant
for independent
power plants; • Inmulation of
indexpound pipe:
and cables | △ Becovery work complications. △ Scannible for machinery. ○ Lack of coolent for independent power plants | | O No parring owing to repet work; O Lark of root- art for independent power plants; • Floreling | O Lock of cooling
for switchboard. • Insudations of
sudarpround colder; • No acculations • No acculations for sudapendent
power plants | | | Inscriptoria-
tion | △ Bettery cars
materialistic,
△ Delay in re-
covery work;
○ No managesta-
tion of materials
and feel | △ Delay in re-
covery work,
○ No communiting,
○ No transporta-
tion of materials
and fael | △ Water wagens ensemble big. △ Delay in the covery work. ○ No communities; ○ No transportation of materials and final | * | ☐ Telephone ex-
censive use | | m Functional disaster propagation due to interdependence ∆ Interaction hinders recovery I Physical disaster propagation Influences on alternative systems * Influence on same systems | Communica-
tion | O Malfraction of controlland con-
trol system; \(\times \) No communication for recov-
ery work | O Malfraction of sentralized con-
trol system; Ne communi-
cation for recov-
ery wank | O Malfunction of contributed sociated systems, \(\times \) No construction, for recovery work | O No paroning owing to repair work; O Milfraction of control system; △ No communication for reconsery work. | | # Interactions among Lifeline Systems in Earthquakes (Yao et al 2005, based on Kameda, Nojima, 1992; Scawthorn 1993; and others) - Type A Functional disaster propagation, due to failure of interdependence among lifelines - Example: Malfunction of electric power reduces serviceability of water supply system in the same area - Type B Collocation interaction, physical disaster propagation among lifeline systems - Example: Bridge collapse also disrupts telecommunication cables fixed on the bridge - Example: Water from a broken water pipe degrades the transmission performance of telecommunications fiber-optics in proximity to the water pipe - Type C Substitute interaction, influences on alternative systems - Example: Gas system failure results in excessive requirements for power systems - Type D Restoration interaction, various hindrances in the restoration stage - Example: system interference in recovery/reconstruction of buried lifelines (e.g. water-gas, power-water, sewer-water) - Type E Cascade interaction, increasing impacts on a lifeline due to initial inadequacies - Example: Increasing degradation of water service in a conflagration as structures collapse and break service connections, reducing system pressure and water supply for fire-fighting - Type F General interaction, between internal components of a lifeline system - Example: Connected electrical substation equipment ### Interdependencies - Previously Identified by Lifelines Council members | | Power | Water | Transportation | Telecom | Other | |----------------|--------|-------|----------------|---------|----------------------------| | Power | | Low | High | High | | | Water | High | | High | High | Fuel | | Transportation | Medium | Low | | High | Fuel | | Telecom | High | High | High | | Fuel
Access
Security | Laurie Johnson PhD AICP Consulting | Research Proposed Next Steps (April 11th Lifeline Council Discussion on Interdependency Study) - √ Establishing a small working group of Council members and other partners/advisors to design and advise on the study (met on July 21) - √ Collect and analyze interdependency modeling studies and develop system performance and upstream and downstream interdependency analytics - Scenario development, modification, and data packaging - Operators identify internal working team to participate in the study - Develop study work program and launch analyses with all operators ## **Designing Our Study** | | Vancouver
(McDaniels, Chang) | Shakeout Southern
California (Porter) | Proposal for Our Study | |----------|---------------------------------|--|--| | Data | Empirical observation, Experts | Empirical observation, Experts | Empirical observation,
Experts | | Focus | Systems | Systems | Systems | | Context | Two events (scenarios) | Single event (scenario) | Scenario(s) | | Emphasis | System/Societal impacts | System/Societal impacts | System impacts | | Outcome | Scenario ranked strategies | Scenario | Lifeline-specific additions to scenario; Understanding interdependencies | | Purpose | Mitigation and preparedness | Lifeline-specific additions to Shakeout scenario | Mitigation and preparedness, response and restoration improvements | ## "Strawman" Approach for Our Study - 1. Scenario development and verification for the interdependency study - 2. Operators answer series of questions about - System performance and disruptions (immediately and over time) - Upstream infrastructure dependencies (assumptions about disruptions and restorations) - Downstream infrastructure dependencies (assumptions about disruptions and restorations) - 3. Data synthesis and integrative analysis - 4. Potential interviews or group workshop to evaluate responses and prioritize interdependencies - Develop action agenda and work program for next phase of analyses and Council work # Key Questions to be Answered in Undertaking Study - Scenario Selection - Size of earthquake - Regional vs. city - Details on impacts, consequences - Interdependency Analysis Approach - Conduct analysis by sectors, operators, systems and/or assets - Questions and Information to be provided (and at what resolution) - Establishing Goals and Outcomes of the Analysis - Help define next phase in the analysis - Work program for next year(s) - Understanding Community Expectations for Lifeline Performance