

Laurie Johnson PhD AICP Consulting | Research

Lifelines Council's Objectives

- Develop and improve collaboration in the City and across the region by regularly convening a group of Executive Officers and Senior-level operational deputies of local and regional lifelines providers
- Understand inter-system dependencies to enhance planning, restoration and reconstruction.
- Share information about recovery plans, projects and priorities.
- Establish coordination processes for lifeline restoration and recovery following a major disaster event.

		Electric power impply	Gas supply	Water rapply	Transportation.	Communication
Interactions among Lifeline Systems in Earthquakes (Source: Kameda, Nojima, 1992)	Electric power cupply	*	O Malharcten of plant, got hold- et, presente de- tion; O Malharcten of centralized control system; O No Charlestice.	O Malfanction of filtratum ploats & pumping segimes; O Malfanction of centralized control criters; O No Shumination	O Treffic ugas! describe: O Malfanctus of electra car & urban radways; O Malfanctus of contrained control cyclose; O No Chemication.	O Melfuncium of sei office; O Melfuncium of centralismi O No dimension; O Melfuncium of miles berrior; O Less of data
	Gus экруйу	Expensive one an alternatives, e.g. Het rapply	10.0	△ Recovery work complications; △ Scientific for machinery	O No proming owing to separa worth	
	Water Supply	O Lack of coolant for independent power plants; • Inmulation of indexpound pipe: and cables	△ Becovery work complications. △ Scannible for machinery. ○ Lack of coolent for independent power plants		O No parring owing to repet work; O Lark of root- art for independent power plants; • Floreling	O Lock of cooling for switchboard. • Insudations of sudarpround colder; • No acculations • No acculations for sudapendent power plants
	Inscriptoria- tion	△ Bettery cars materialistic, △ Delay in re- covery work; ○ No managesta- tion of materials and feel	△ Delay in re- covery work, ○ No communiting, ○ No transporta- tion of materials and fael	△ Water wagens ensemble big. △ Delay in the covery work. ○ No communities; ○ No transportation of materials and final	*	☐ Telephone ex- censive use
m Functional disaster propagation due to interdependence ∆ Interaction hinders recovery I Physical disaster propagation Influences on alternative systems * Influence on same systems	Communica- tion	O Malfraction of controlland con- trol system; \(\times \) No communication for recov- ery work	O Malfraction of sentralized con- trol system; Ne communi- cation for recov- ery wank	O Malfunction of contributed sociated systems, \(\times \) No construction, for recovery work	O No paroning owing to repair work; O Milfraction of control system; △ No communication for reconsery work.	

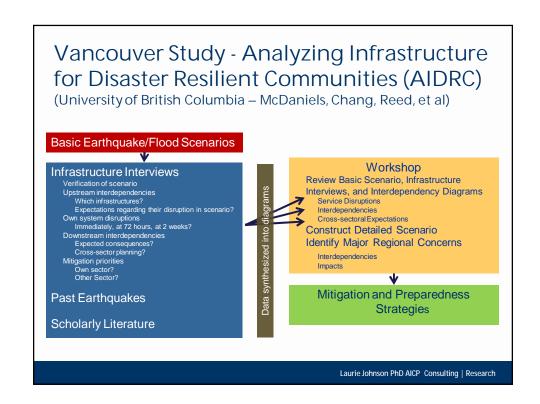
Interactions among Lifeline Systems in Earthquakes

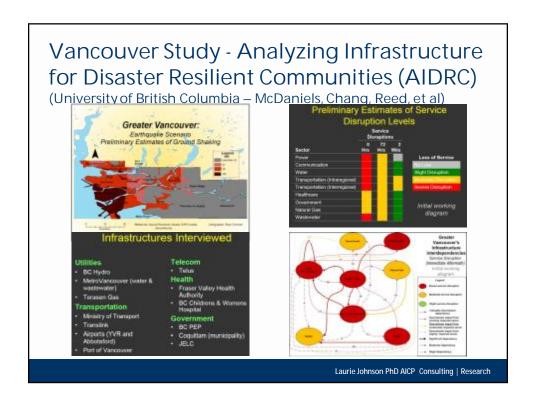
(Yao et al 2005, based on Kameda, Nojima, 1992; Scawthorn 1993; and others)

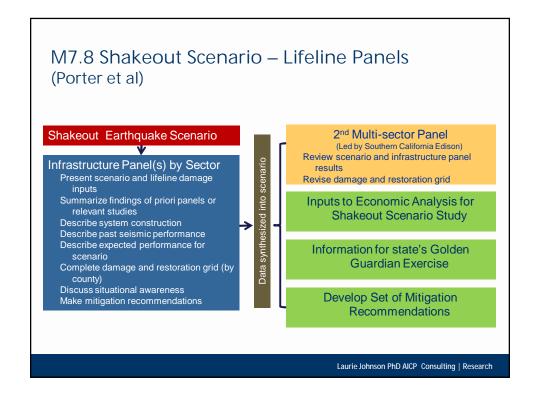
- Type A Functional disaster propagation, due to failure of interdependence among lifelines
 - Example: Malfunction of electric power reduces serviceability of water supply system in the same area
 - Type B Collocation interaction, physical disaster propagation among lifeline systems
 - Example: Bridge collapse also disrupts telecommunication cables fixed on the bridge
 - Example: Water from a broken water pipe degrades the transmission performance of telecommunications fiber-optics in proximity to the water pipe
- Type C Substitute interaction, influences on alternative systems
 - Example: Gas system failure results in excessive requirements for power systems
- Type D Restoration interaction, various hindrances in the restoration stage
 - Example: system interference in recovery/reconstruction of buried lifelines (e.g. water-gas, power-water, sewer-water)
- Type E Cascade interaction, increasing impacts on a lifeline due to initial inadequacies
 - Example: Increasing degradation of water service in a conflagration as structures collapse and break service connections, reducing system pressure and water supply for fire-fighting
- Type F General interaction, between internal components of a lifeline system
 - Example: Connected electrical substation equipment

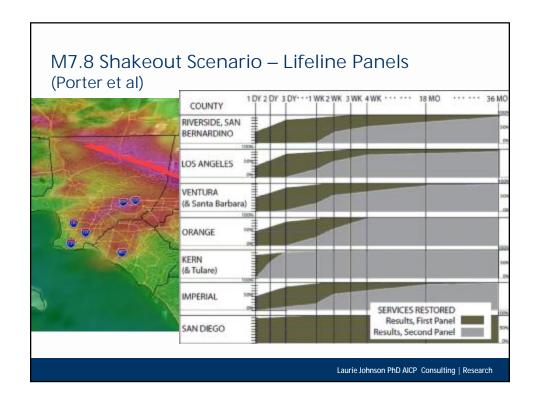
Interdependencies - Previously Identified by Lifelines Council members

	Power	Water	Transportation	Telecom	Other
Power		Low	High	High	
Water	High		High	High	Fuel
Transportation	Medium	Low		High	Fuel
Telecom	High	High	High		Fuel Access Security


Laurie Johnson PhD AICP Consulting | Research


Proposed Next Steps (April 11th Lifeline Council Discussion on Interdependency Study)


- √ Establishing a small working group of Council members and other partners/advisors to design and advise on the study (met on July 21)
- √ Collect and analyze interdependency modeling studies and develop system performance and upstream and downstream interdependency analytics
- Scenario development, modification, and data packaging
- Operators identify internal working team to participate in the study
- Develop study work program and launch analyses with all operators


Designing Our Study

	Vancouver (McDaniels, Chang)	Shakeout Southern California (Porter)	Proposal for Our Study
Data	Empirical observation, Experts	Empirical observation, Experts	Empirical observation, Experts
Focus	Systems	Systems	Systems
Context	Two events (scenarios)	Single event (scenario)	Scenario(s)
Emphasis	System/Societal impacts	System/Societal impacts	System impacts
Outcome	Scenario ranked strategies	Scenario	Lifeline-specific additions to scenario; Understanding interdependencies
Purpose	Mitigation and preparedness	Lifeline-specific additions to Shakeout scenario	Mitigation and preparedness, response and restoration improvements

"Strawman" Approach for Our Study

- 1. Scenario development and verification for the interdependency study
- 2. Operators answer series of questions about
 - System performance and disruptions (immediately and over time)
 - Upstream infrastructure dependencies (assumptions about disruptions and restorations)
 - Downstream infrastructure dependencies (assumptions about disruptions and restorations)
- 3. Data synthesis and integrative analysis
- 4. Potential interviews or group workshop to evaluate responses and prioritize interdependencies
- Develop action agenda and work program for next phase of analyses and Council work

Key Questions to be Answered in Undertaking Study

- Scenario Selection
 - Size of earthquake
 - Regional vs. city
 - Details on impacts, consequences
- Interdependency Analysis Approach
 - Conduct analysis by sectors, operators, systems and/or assets
 - Questions and Information to be provided (and at what resolution)
- Establishing Goals and Outcomes of the Analysis
 - Help define next phase in the analysis
 - Work program for next year(s)
- Understanding Community Expectations for Lifeline Performance