Lifeline System Interdependencies: Field Observations and Modeling Challenges

Leonardo Dueñas-Osorio

Assistant Professor Department of Civil and Environmental Engineering Rice University

City and County of San Francisco Lifelines Council Meeting # 8: Lifeline Interdependencies During Post-Disaster Recovery

> San Francisco, California April 25, 2012

Motivation (1/7)

- Contemporary complex infrastructure systems
 - Essential for modern society function
 - Large scale and high exposure systems
 - Reached accelerated phase of aging and deterioration
 - More interdependent for optimized operation

Motivation (2/7)

Emerging complex infrastructure systems

Motivation (3/7)

- Research on interdependent infrastructure systems
 - Inoperability input-output Leontief methods
 - Agent-based modeling
 - Data-based methods
 - Network and complexity-theory approaches

- Before 1990
- 1990 trhough 1994
- 1195 through 1999
- 2000 trough 2004
- 2005 and beyond

Motivation (4/7)

Efforts to understand interdependencies and quantify their strength of coupling in practice

- European Union's Institute for the Protection and Safety of Citizens
- U.S. Department of Homeland Security
- Technical Council on Lifeline Earthquake Engineering
- San Francisco's SPUR initiative

VULNERABILITY OF INTERCONNECTED INFRASTRUCTURE A case of EU gas and electricity networks

K. Poljanšek, F. Bono, E. Gutiérrez

EUR 24275 EN - 2010

Motivation (5/7)

- Implementations to cope with potential interdependencies and their cascading effects in practice
 - MLGW's ring of telecommunications
 - British Columbia's Olympic games scenarios
 - Houston's water and gas decoupling from grid

Motivation (6/7)

Japanese efforts to link interdependence with resilience

Motivation (7/7)

Simulation-based network modeling approach

- Hazard and Action on Components (HAC)
- Systemic Damage Propagation (SDP)
- Cascading Failures Assessment (CFA)
- Interdependence Damage Propagation (IDP)
- Systemic Performance Assessment (SPA)

Istr = P(F(i)|F(j))

Istr: Interdependence Strength

Presentation Outline

- 1. Recent field observations of lifeline system interdependencies
- 2. Modeling of infrastructure interdependence
- 3. Quantification of coupling strengths
- 4. Concluding remarks and future research / implementation

1. Recent Field Observations (1/2)

Power system after the 2010 Chilean Earthquake

- Chilean Interconnected Systems (CIS) back in 48 hours
 - N-1 security
 - Emergency plans

1. Recent Field Observations (2/2)

- Observed interdependencies that delayed restoration
 - Road infrastructure
 - Telecommunication systems
 - Logistics

- Observed actions to cope with interdependencies that delayed restoration
 - Private telecommunications
 - Transmission autonomy
 - Decentralized dispatch
 - Mobile generation

2. Insights from Modeling (1/8)

A set of realistic yet streamlined systems

Power System S_1

 $\begin{array}{ll} S_1 \rightarrow S_2 & \text{Power effects on Water} \\ S_2 \rightarrow S_1 & \text{Water effects on Power} \end{array}$

Water Network S_2

2. Insights from Modeling (2/8)

Water Connectivity Loss from interdependence with power

2. Insights from Modeling (3/8)

• Water Connectivity Loss from interdependence with power

- Coupling contributes significantly to water fragility
- Interdependence control must be activated early

2. Insights from Modeling (4/8)

Added Connectivity Loss C_L from interdependencies

- Power system is less sensitive to coupling
- Interdependencies manifest at select hazard levels

2. Insights from Modeling (5/8)

• Effects of capacity increase of congested elements on C_L

 $S_1 \rightarrow S_2$

 Local capacity increase to manage intra- and interdependent cascades is insufficient to control C_L

2. Insights from Modeling (6/8) Effects of interface topology across systems Water Network Density D = 0.50D = 0.10D = 0.10lstr = 0.10lstr = 0.10lstr = 0.50**Power Network**

- Optimal interfaces exhibit high D and low Istr
- Strengthen power nodes and water links

2. Insights from Modeling (7/8)

Assess the effects of probabilistic seismic hazards

2. Insights from Modeling (8/8)

Risk-level effects of interdependence

 Interdependence effects persist after convolution of fragility with seismic hazards

3. Coupling Strength Quantification (1/8)

Geographical and seismological context of Chile 2010 Earthquake

3. Coupling Strength Quantification (2/8)

Restoration time series in the Bio-Bio Region VIII

3. Coupling Strength Quantification (3/8)

Restoration time series in the Maule Region VII

3. Coupling Strength Quantification (4/8)

Sample of strong cross-correlation (coupling strength)

3. Coupling Strength Quantification (5/8)

Sample of weak cross-correlation (coupling strength)

3. Coupling Strength Quantification (6/8)

Pair-wise cross-correlations CCFs in Region VIII

Series	F_VIII		M_VIII		P_VIII		P_C_VIII		P_T_VIII		W_C_VIII		W_T_VIII	
	Peak ρ	Lag h	Peak $ ho$	Lag h	Peak ρ	Lag h	Peak $ ho$	Lag h	Peak <i>p</i>	Lag h	Peak ρ	Lag h	Peak ρ	Lag h
F_VIII	1.00	0.00	0.74	0.00	0.84	2.00	0.53	2.00	0.74	-3.00	0.66	-11.00	0.96	-11.00
M_VIII	0.74	0.00	1.00	0.00	0.73	2.00	0.64	2.00	0.83	-3.00	0.48	-11.00	0.74	-11.00
P_VIII	0.84	-2.00	0.73	-2.00	1.00	0.00	0.79	0.00	0.89	-5.00	0.56	-13.00	0.79	-13.00
P_C_VIII	0.53	-2.00	0.64	-2.00	0.79	0.00	1.00	0.00	0.68	-5.00	0.35	-8.00	0.53	-8.00
P_T_VIII	0.74	3.00	0.83	3.00	0.89	5.00	0.68	5.00	1.00	0.00	0.50	-8.00	0.75	-8.00
W_C_VIII	0.66	11.00	0.48	11.00	0.56	13.00	0.35	8.00	0.50	8.00	1.00	0.00	0.70	0.00
W_T_VIII	0.96	11.00	0.74	11.00	0.79	13.00	0.53	8.00	0.75	8.00	0.70	0.00	1.00	0.00

F: Fixed lines	W: Water					
M: Mobile lines	C: Concepción					
P: Power	T: Talcahuano					

- Strong operational coupling between telecommunication systems and with power systems
- Measurable logistical coupling with water systems

3. Coupling Strength Quantification (7/8)

Water and power systems in Concepcion, Chile

3. Coupling Strength Quantification (8/8)

Fragility point validation

4. Conclusions and Future Work

- There is a need for modeling tools with predictive capabilities that merge physical and institutional systems
- Interdependencies are significant at specific ranges of hazard intensities and tend to quickly propagate main effects
- Infrastructure interfaces that promote coordination and prevent propagation are *denser and weaker than current designs*
- Time-series analyses of restoration curves enable *coupling strength quantification* and interdependence *model validations*
- Expand analyses of interdependence effects to system resilience assessment
- Prioritize critical components and restoration tasks to achieve target multi-system performance levels

Thank you!

Support from:

National Science Foundation

Department of Homeland Security of the City of Houston

Shell Center for Sustainability

Technical Council on Lifeline Earthquake Engineering (TCLEE)

Rice University

leonardo.duenas-osorio@rice.edu

Insights from Modeling

Effects of interface topology on performance • Water node

Power node

Clustering

Hybrid Distance-Betweenness

Betweenness

Insights from Modeling

Systems with distinct physical operating principles

 Congestion is a dominant failure mode for telecommunication systems

Recent Field Observations

Autocorrelation (ACF) in power systems

•